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In this paper we examine the application of a domain decomposition method to the
solution of Poisson and Helmholtz equations often involved in the oceanic models. By
studying a theoretical convergence rate of the method in the case of two subdomains
(which can be generalized to some extent to the N-subdomains case), we can link
some numerical properties of the method to physical features of the model ocean
circulation. In particular, the peculiar role of the barotropic mode with respect to
baroclinic modes is discussed. The tuning of the different parameters involved in a
practical implementation of this Schwarz alternating method is also addressed for
the case of a quasi-geostrophic oceanic model. Some CPU-timings are presented.
On 16 processors of a CRAY T3D, the parallel code runs as fast as the sequential
version does on a CRAY C90. © 1998 Academic Press
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1. INTRODUCTION

To achieve an acceptable level of realism, ocean modelling requires huge computati
resources, both in terms of CPU and storage. This follows from the fact that the dynam
equations, which are similar to those in meteorology, must be integrated with a very h
horizontal resolution (typically 10 km) to explicitly resolve the mesoscale eddies, whi
influence on the large-scale circulation is fundamental. Moreover, the typical time sce
are 10 times longer for the ocean than the atmospheric ones and are as long as deca
centuries for thermodynamical processes. These spatial and temporal scales explair
ocean models are systematically pushing the power of available supercomputersto the |
The developmentin the 1980s of vector computers led to a spectacular increase in the si
the problems that became tractable by ocean modellers. Moreover, there were general
need for dramatic changes in the numerical codes to ensure an efficient use of such mact
The presenttendency inthe evolution of supercomputersis directed towards the develop
of massively parallel machines having hundreds, or even thousands, of processors anc
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a distributed memory. The power of these machines will almost certainly reach a tera
(10* floating point operations per second) in the forthcoming years, making possible
long-term integration of high resolution global ocean models (see, for example, [18]
further details).

However, the adaptation of present sequential numerical codes on these new macl
is generally far from straightforward. To ensure an efficient use of parallel computers, t
main constraints must guide this adaptation: the load-balancing (all the processors r
execute approximatively the same amount of work) and the ratio communication over c
putation (communication times must be as low as possible with regard to computatic
There are classically two main approaches to implement a code on parallel computers
rect parallelization and domain decomposition methods. In a direct parallelization appros
the structure of the original sequential code is not modified. The code is decomposed ir
succession of elementary tasks, each task being executed in parallel using the power ¢
numerous processors. This can be done explicitly by using message passing instructior
even implicitly on certain machines, which offers the facility of a virtual central memor
managed by the system and the compiler. So this approach requires relatively few cha
of the code. However, global operations in the sequential algorithm often lead to glo
communications in the parallel code (for example, in a matrix product). Hence, dir
parallelization generally does not provide a small ratio communication/computation &
thus often yields relatively poor results. On the other hand, domain decomposition meth
(DDM) avoid those global operations by creating local problems quasi-independent on
each other. The original problem is divided into identical local problems of smaller si:
which are treated in parallel by the different processors. Most communications invol\
are local, between processors that are assigned to subdomains with common bound
Moreover, the load balancing can be adjusted by the choice of the sizes of the diffel
subdomains (e.qg., of equal sizes if the amount of work is uniform over the whole doma
Several mathematical and physical potential advantages of DDM can also be cited: pc
bility for local mesh refinements, improvement of the problem conditioning by reducir
the problem scale, approximation of discontinuous coefficients by constant coefficient:
each subdomain, etc. Ocean models are naturally well suited for running on massi
parallel computers, since most of the computations are local. As a matter of fact,
numerical schemes for the spatial differential operators only require the knowledge of
state variables in the immediate vicinity of the computation point. Thus the amount
communications will be weak, provided the fact that the domain decomposition is 2D &
not 3D, i.e. that the domain is divided horizontally into subdomains containing the whc
vertical dimension (this comes from the fact that the vertical scale is much smaller than
horizontal scale and, thus, that a 3D decomposition would involve a lot of communicatic
to compute the vertical schemes). The time discretization scheme is also of importance
parallelization purposes. Explicit time schemes are of course the simplest to manage
parallel computers, since no solution method is necessary and, hence, no communicat
but the use of such scheme requires short time steps [3, 12]. On the other hand, implicit:
schemes allow greater time steps, but imply the solution of elliptic equations at each t
step [6, 9, 19]. Both approaches are equally used in the panel of general ocean circul:
models presently developed and exploited by the oceanographic community.

When the solution of elliptic equations is necessary, the parallel versions of the
numerical models generally make use of parallel versions of classical iterative solv
like preconditioned conjugate gradient. To our knowledge, very few efforts have be
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made in the context of ocean modelling towards the use of solvers specifically designec
domain decomposition problems. We can only cite Gugbal.[9], who use a dual Schur
complement method to solve the equation for the barotropic streamfunction. In this ¢
text, this paper presents an application of the Schwarz alternating method to the solutic
Poisson and Helmholtz equations often encountered in ocean circulation models.
method and its different possible parallel versions are presented in Section 2. Their the
ical convergence properties are discussed in Section 3, and some physical interpreta
are given. Then, we present in Section 4 some numerical tests. Different strategies fol
choice of the partitioning of the domain and of the first guess for the DDM are discussed,
the stability of the method with respect to the turbulence of the flow is addressed. Fine
timing results are given for implementations on both a CRAY T3D and a IBM SP1.

2. THE SCHWARZ ALTERNATING METHOD

The main idea of a domain decomposition method is simply to decompose the origi
problem on the domaite into several identical problems of smaller sizes on subdomair
Q. The problem is then to identify the conditions on the internal boundaries. There e
two main classes of DDM: the nonoverlapping methods, and the overlapping meth
(subdomains have common zones). For a review of the DDMs, see, for example, [5].

The Schwarz algorithm, which is probably the more classical DDM, is an overlappi
method. We will give here a brief description of this method. See [13] for further details

Let © be a bounded open set Bf¥ (N < 3). We consider a decomposition gfinto M
subdomain$2; with overlapping:

Q=)

=

i=1

The internal boundaries are denoted/y defined byy;; = 92 N 2. An example of such
a decomposition into three subdomains is given in Fig. 1. We want to solve the probler

Lu=f inQ
u=g onag,

wherelL is a linear second-order operator definedRbh

In the case of only two subdomains, the original form of the Schwarz method is t
following alternating algorithm:

e Initialization . Choose a first gue$1§ on Q,
e lteration. Forn> 1, findu!" in H()(i =1, 2) such that

Luf=f inQy, ul=ul? onyp ul=g ondNI;
Luj=1f inQ uj=u] oOnyx, U;=g 0naNIQ.

FIG. 1. Decomposition into three subdomains with full overlap.
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Under this form, this algorithm presents no intrinsic parallelism. To generalizeht to
subdomains with a possible parallelization, two ways are possible.

The first one, known as the “additive” Schwarz method, consists of the following alg
rithm, in which the computation of the approximate solution at iterationly depends of
the approximate solution at iteration- 1:

e Initialization . Choose a first guess on each subdomaif;
e lteration. Forn > 1 (with ui”‘1 known), findu in H1(Q;) such that

LUin =f in Q;
u'=g onaR; NaN

uP =ujt ony; forjel-- M suchthat;Ne; # 0.

The convergence of this algorithm can be demonstrated under the assumptie that
QN =¥ V(i # ] # k). However, the overlapping conditions can be less restrictiv
[14]. Moreover, the presence of the overlapping areas implicitly ensures the continuity
u and its derivatives between the different subdomains. This algorithm will be denoted
Schwarz-1. Another possible parallel implementation of the Schwarz method is to conse
the alternating nature of the original algorithm and to introduce the parallelization vie
red/black numbering of thi®l subdomains; each subdomain is associated to one color, f
exampleQ; is red ifi is even and black ifis odd, in such a way that two subdomains with
common boundaries have different colors:

o Initialization . Choose a first guess on each black subdomai
e lteration. Forn > 1 (with ui”‘1 known), findul" in H1(€;) such that for2; red

Lud = f in Q;
u'=g onoai NAY

n-1 ony; forjel---M suchthat2; NQ; # ¥;

n_
u' = uf

then for2; black

Lu'=f ingG

u'=g onawR NI

u' =uj onyj forjel-.-M suchthat2; NQ; #¢.
This algorithm will be denoted by Schwarz-2. The link between these two algorithms
close to the link between the Jacobi and Gauss—Seidel methods for the solution of lit
systems (see, for example, [4]). So, in the same way than SOR is a hatural extension ¢
Jacobi and Gauss—Seidel algorithms, a possible extension of the previous Schwarz me
is:

e |nitialization . Choose a first gue:u? on each subdomaif;
e Iteration. Forn>1, findu! in H1(Q;) such that for; red

Ll.lir| =f in Q;
u'=g onaiNaAN

uW=ul"?+ o)™ —ul"?) ony; forjel-- M suchtha®;NQ #7;
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FIG. 2. Assignment subdomains—processors in the case of four subdomains (overlap not represented

then forQ; black
Lul = f in
u'=g ona NoK
u =uj +o(u) —uj) ony; forjel---M suchtha;Ne; # 4.
This algorithm will be denoted by Schwarz-3.

Before addressing the convergence properties of these methods, let us discuss b
their practical implementation. The usual way to code the Schwarz method is:

initialize data on the processors

1. exchange of the boundary values with the neighbours
2. solve the local problem

3. compute a stopping criterion in parallel

4. goto 1 or continue

The Schwarz-1 algorithm is explicitly parallel and can be easily implemented by assignir
subdomain per processor. On the other hand, Schwarz-2 and Schwarz-3 algorithms re
more subdomains than processors to be fully parallel. A usual implementation cons
in defining twice more subdomains than processors, and assigning one red and one |
subdomain to each processor. For example, in the case of four processors, Fig. 2 pre
the decomposition for the different Schwarz algorithms.

3. CONVERGENCE PROPERTIES IN THE CONTEXT
OF THE HELMHOLTZ EQUATION

As mentioned previously, in the context of ocean modelling, the equations to be sol
numerically at each time step mainly consists of Poisson and Helmholtz equations. £
matter of fact, when they are not totally explicit, the primitives equations (PE) mode
require the solution of a Poisson equation for the barotropic mode. And similarly, que
geostrophic (QG) models require the solution of both Poisson and Helmholtz equatic
since the system to solve at each time step is of the form:

Au = f for the barotropic mode
Au—)%u=g foreach baroclinic mode

wherer = 1/Ry, Ry being the Rossby radius of deformation corresponding to the baroclir
mode.

As an example, the derivation of the QG equations leading to these Helmholtz equati
will be described in Section 4.
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FIG. 3. Decomposition into two subdomains.

3.1. Convergence Results for the Helmholtz Equation

In the case of the Helmholtz equations, we can determine the theoretical factor of
vergence of the Schwarz method. For sake of simplicity we consider a decomposition |
L x L domain into two subdomains as in Fig. 3 (more details can be found in [7]). Let

e U* be the solution of the problem
e € = u] — u* be the error on the subdomain at iterationn, and
e € = u) — u* be the error on the subdomair at iterationn.

ALGORITHM SCHWARZ-1. €] et€] are the solutions of the system:

A€} —2%€) =0 inQ
=0 ond2; NI

ony1z;

A% — )»269 =0 in Q)
&=0 ono2, NI
S =e"" onyau

By a separate variables method we determine solutions of those systems:

00 . 2, m?n?
 mr Sinhy/ ATy
e,y = E ap, sin — x— V7
L . 2, m?n?
m=1 sinhy /A“+"7%1

pENRLE ]

(X, y) = Zb{; sin % X L .
m=1 sinh\/AZJr mL’z’ (L — o)

Then the boundary conditions yield

22 . 27.[2
324 M5 ys sinhy A2+ T3 (L — y1) a2

am =
sinhy /224 T2y, sinhy /24T (L — y,)

and the same relation fbf.,. A study of the ratia@!, /ai-2 shows that its value is maximum
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for m=1. If we denote by this value we have

oo <> lanl=>"
m=1 m

< uF@Y " ad)| (Z lak| if nis ever).

It follows that the theoretical convergence rate of the Schwarz-1 method is

sinhBy» sinhB(L — yy)
sinhBy; sinhB(L — y»)’

p1(Y1, Y2) = /I = \/

whereg = /A2 + m2/L2,
ALGORITHM SCHWARz-2. The same study leads to the following convergence rate:

sinhgy, sinh(L —y1)
sinhBy:1 sinhB(L —y») o

p2(Y1, Yo) =

ALGORITHM SCHWARZ-3. In [8], Evans and Kang computed the convergence rate
the algorithm Schwarz-3: ibop = (3/./p2) COS[(s + 4r)/3], wheres=arc cos—/ix )
then

3(wopt -1 '

P31, Y2) = =40

3.2. Discussion

In this section we intend to study the evolution of the convergence factor as a funct
of the partitioning of the domain. In the following discussion the algorithm Schwarz-1
used, but all three algorithms have similar convergence properties with regard to the stu
parameters.

1. Size of subdomainket x = (y; + Y»2)/2 the location of the middle of the overlapping
area andl = y; — ¥, the overlapping length as in Fig. 3. For a fixed valuelpfve intend
to find an optimal value fox. Figure 4 shows the evolution of the convergence gate
as a function ofx, in the case of the barotropic mode=0) and of a baroclinic mode
(A= (12.10° m)~1). Our domain is a square of size=[4.10° m]. For each casel is fixed
to its optimal value: % 10° m for the barotropic mode and:2 10° m for the baroclinic
mode (this choice will be discussed in Section 4.2).

For the baroclinic mode, Fig. 4 shows that the location of the artificial boundary dc
not have a real influence on the convergence factor. This can be interpreted by exami
the relative sizes df andRy = 1/A. As a matter of fact, for values afandL which satisfy
the rulerL > r (i.e,, t Ry < L), theng can be approximated byandp; by exp—xd),
whered is the overlap. In other words, when the typical scale of baroclinic motions



100 DEBREU AND BLAYO

s T T T ]

ERT B

250 | E

L0 ]

s | B

et E B

convergence rate
convergence rate

) ; L L ) L
1.10° 210 310 110t 2.10° 3.10° a.10*

x : middle of the overlap area x : middle of the overlap area

FIG. 4. Convergence ratg, as a function ok the location of the middle of the overlap area: (left) barotropic
mode; (right) baroclinic mode.

small, compared to the ocean basin size (which is almost true in practical applicatio
the convergence rate of the Schwarz algorithm is nearly independent of the location of
overlap area but depends only of the size of the overlap.

On the other hand, when the relatibh > 7 is not satisfied, as it is the case for the
barotropic mode where= 0, we can notice on Fig. 4a that the choice of two subdomair
of equal sizes{ = L /2) leads to the worst convergence factor.

This remark can be useful during the implementation of a DDM on a sequential co
puter. This can be done, for example, to address such problems as increasing the prec
of a numerical solution, or as defining differnt values of coefficients in each subdomain
these cases, when it is possible, a decomposition into subdomains of different sizes w
be more efficient than into subdomains in equal sizes.

However, processing with subdomains of different sizes is unacceptable for the
gramming on parallel machines. As a matter of fact, at each iteration a subdomain waits
its new boundary values from its neighbours. Then for evident reasons of load balanc
DDMs strongly require that the different processors end their local work at the same tir
So the subdomains will be chosen of equal sizes, even if this penalizes the converg
rate.

2. Variation of the overlapThis choice ofx = L /2 being made, we can now study the
evolution of the convergence rate as a function ofd, the size of the overlap. Figure 5
shows the evolution of the convergence factor with the overlap for a decomposition i

1 ' v
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FIG. 5. Evolution of the convergence factor with the size of the overlap: (left) barotropic mode; (righ
baroclinic mode.
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two subdomains of equal sizes. A Taylor expansion of the convergence rate gives the s
at the origin:— (/L) coth(zr /2) for the barotropic mode anda for the baroclinic mode
(for this mode the curve is exponential). Using the valuds ahdi mentioned previously,
this yields to slopes equal te8, 57 x 10~ for the barotropic mode and8, 33 x 10~° for
the baroclinic mode. This explains the differences between the two figures.

For the baroclinic mode, even a small size of overlap leads to a good converge
rate, and increasing the size of the overlap would only increase the amount computat
without accelerating the convergence. On the other hand, for the barotropic mode a Is
value of overlap is needed. For the practical choicd,adnd optimal value can be found
which balances the two contradictory effects associated with an incredsthefincreasing
amount of computations at each iteration; and the decreasing number of iterations.

3. Generalization to n subdomainBor the case of subdomaingn > 3) we cannot
find a literal expression of the convergence factor. However, let us consider a decon
sition into n subdomains along th¥-axis, i.e.Q; =[0, L] x [&,b],i=1---n, where
O=a<apy<bi<az<bh<- - <ap_1<bho<an,<bpi<b,=L.

Kang and Evans [11] proved that the convergence factor is governed by the spe
radius of the matrix

0 DBy O 0

D;'B, 0 D;'B :

A=| o 0
: . Dy YiBn1

0 0 D;'B, 0

where

D — sinhBa; coshBa; B — 0 0
'~ \sinhgb coshgb, /* ' \sinhgb; coshgb;, )’

, sinhBa coshBa

Then in the case af subdomains the convergence factor of the algorithm Schwarz-1 is t
spectral radius of the matrik : pschwarz1 = 0 (A) = max|u;|, whereu; are the eigenvalues
of A.

Figure 6 shows the evolution of the convergence factor as a function of the numbe
subdomains for the barotropic mo@e= 0). For this figureg andb; were chosen in order
to obtain domains of equal size, and the length of the overlap is a quarter of the ler
of each subdomain. As can be seen, the convergence rate seems to strongly suffer
increase of the number of subdomains. The choice of the first guess of the iteration
thus be of crucial importance (see Section 4.2).

3.3. Conclusion on the Schwarz Algorithms

This theoretical study let us conclude that the optimal overlap must be seen as a func
of A, i.e. as a function of the Rossby radius of deformatin The properties of the
method strongly differ between the barotropic mode and the baroclinic modes. We h
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already tried to give a physical interpretation of this behaviour, but the next section v
clearly establish the link between the physical properties of the ocean model and the opt
overlap, demonstrating the peculiar-role of the barotropic mode.

From a theoretical point of view, the Schwarz-3 algorithm seems to produce the
convergence factor for an appropriate valueof

4. NUMERICAL EXPERIMENTS

The results presented in this section were obtained with the algorithm Schwarz-1. H
ever, all the remarks are also relevant to the other algorithms, and timing results are g
for all the algorithms.

4.1. The Numerical Model

The model used in the present study is a multilayered quasi-geostrophic (QG) mode
first proposed by Holland [10]. For midlatitude oceanic circulations, QG equations may
derived from the Navier—Stokes equations, via an expansion as a function of the Ro:s
numbers =U/foL, whereU is a horizontal velocity scale (a few centimeters per secdnd),
is a horizontal scale (100 to 1000 km), afids the Coriolis parameter at the mean latitude
of the basin. Theg-plane approximation is used, so that Coriolis parameter is written
f(y) = fo + By, whereg is constant. At the ordet, one obtains the quasi-geostrophic
equations, which can be written as the conservation of potential vorticity [17],

D 9 (10w
Dt[ +az(882)+’3y} +h @
whereV is the three-dimensional streamfuncti@y,Dt is the Lagrangian derivative,

D_8+8\118 a\pa_a+m/)
Dt at 9x dy 9y dax ot



OCEAN MODELLING 103

FIG. 7. Stratification of the model.

V2is the horizontal Laplacian operator, a8z) = (g/f2)((d In p)/d2) represents the ver-
tical variation of densityq is the gravitational acceleration apds the density). The model
is driven by the vertical component of the wind stress ctylnd dissipatiotk is included
through a bottom friction and a horizontal friction.

The vertical discretization divides the ocean iNttayers of constantdensitieg, . . . , o -
Atrest, the thicknesses ofthe layersHie . . ., Hy (see Fig. 7). Equation (1) may be written

E]
a[vzqz — AV]=B 2)
with

Wy
o U= ( : )the streamfunctions in the different layers

Wy
e Ais atridiagonal matrix which nonzero elements are

—f5 fg f§ —f§
Hkg{(—l/Z’ HkO-12  HiOki12 ’ HkGk11/2

with g{(+1/2 =0(pks1— px)/po for 0<k < N and g’l/2 = 9/N+1/2 =00 (pg is a reference
density)
[ ]

B=| J(V2W + By + ,:*i(hkﬂ/z — hk_1/2), W) + P+ Ti

with hk+1/2 = fo(Wky1 — \Ifk)/g|’(+1/2 forO <k < N, h1/2 =0 anth+1/2 = hg (height of
the bottom topography); # 0, Ty =0, k > 1 (wind stress curl).
A may be diagonalized [2A=P~1DP, where D is a diagonal matrix of positive
eigenvalues. The first element bfis 0, sinceA is singular. Equation (2) becomes
ad

a[VZP Py _—PDPly]=PP!B;
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i.e., the decoupled system,
ad
&[VZCD — Do]=P1B, ()

where® = P~1W. The first eigenvector ab, corresponding to the eigenvalue 0, is callec
the barotropic mode, and the others eigenvectors are called baroclinic modes.

The numerical integration of the system (3) is performed using a finite difference mett
with the same space step in both horizontal directions. The time scheme is a “leap-fr
(second-order accurate scheme). This scheme has the disadvantage to develop a c
tational mode in the solution resulting in an unstable method. The occasional insertiol
a step made by a two-level scheme (Euler scheme) suppresses the development of s
mode. For a detailed discussion of the leap-frog properties, see, for example, [16].

The leap-frog scheme leads to the system:

V2q>n+l _ D(Dn+l — 2At(Ple)(nfl,n) + V2q>n71 _ Danfl’ (4)

where the superscripts denote time levels atds the time increment. The superscript
(n—1,n) over P~1B indicates that, to ensure numerical stability, the dissipative tern
(bottom and horizontal friction) are computed at time lewel 1 and the other terms at
time leveln.

The laplacian operatoris evaluated with the standard five-point scheme, while the Arak
procedure [1] is used to compute the Jacobian operator.

At each time step, we must then solMeHelmholtz equations which unknowns are the
modes:

AOM — oMt =CcMt 1<i<N.

The first equationi(=1) corresponding to the barotropic mode is a Poisson equati
(21=0).

The different tests we realized were based on the following configuration of the oce
model:

e arectangular domain of 4000 km 4000 km, discretized with a resolution of 10 km.

e a vertical discretization of the domain into three layers, which thicknesses at r
are respectively 300, 700, and 4000 m. The density stratification is chosen to corresg
roughly to the stratification of the North Atlantic ocean. The three values of the Helmho
coefficients corresponding to the three modes are respectively) (i.e., Poisson equation
for the barotropic mode},, = 0.445x 10~* andiz = 0.883x 10~* m~* for the baroclinic
modes (i.e., Rossby radii of deformati® = 22.5 km andR, =12 km).

The ocean bottom is flat, and the wind is chosen in order to produce a two-gyre circulat
with an intense median jet (see Fig. 8).

Each test corresponds to a solution computed by the direct sequential solver. This solt
is considered as the true solution and allows us to determine the corresponding right-t
side of the equation for the parallel programs. Then we can compare the solution givet
the parallel algorithm with the original solution.

For each test case, we made several experiments using several fields issued from :
lations. Then each result presented here is an average over those experiments.
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FIG. 8. Example of instantaneous field for the Barotropic mode.

The stopping criterion for the Schwarz method is

n_ -1
oy -,
S5,

whereM is the number of subdomains aitd|, denotes the euclidian norm.is fixed to
107 for the tests. This choice is discussed further.
For the iterative Schwarz method, results are given with three different first g?:ess

o afirstguess 0, wherg) = 0,
o afirstguess 1, when(t + 1) = u*(t),
o afirstguess 2, Whemﬁ(t +1) = 2u’j‘(t) —ujt-1 (i.e., afirst-order approximation),

Whereu]-*(t) is the solution at the time

An example of the instantaneous field is given in Fig. 8 for the barotropic mode. As can
seen, the circulation is turbulent, and numerous rings are generated by the instabilities ¢
eastward jet. From the numerical point of view, the efficiency of the domain decomposit
methods strongly depends on the solver used on each subdomain. In this model, we |
fast direct solver, combining fast Fourier transforms and cyclic reductions (FACR), to so
the Poisson and Helmholtz equations. This solver performs its Fourier transforms in th
direction. Thus the longer the dimension in the X direction, the faster the solver. This v
have an influence on the choice of the partitioning.

In the next subsection we will illustrate the behaviour of the Schwarz method for tt
model and will particularly focus on the four following points: particular role of the
barotropic mode, existence of an optimal partitioning, influence of an increase of the 1
bulence, and the error of the solver.
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4.2. Tuning of the Method Parameters

As mentioned previously, the Schwarz algorithm depends on several parameters,
the overlap, the first guess, and the partitioning. In this section we try to fix those pa
meters.

Overlap. The optimal overlaps found for the three different modes were 900 km for tt
barotropic mode, 300 km for the first baroclinic mode, and 200 km for the second barocli
mode. Those values correspond to the smallest times of execution. We recall that whet
size of the overlap increases, the number of iterations decreases but the amount of wo
each subdomain grows. So this optimal value corresponds to a minimum of time and nc
a minimum number of iterations number.

All the results presented further in this paper were obtained with these overlaps. We
observe that the optimal overlap for the barotropic mode is much more important than
the baroclinic modes, which is consistent with the theoretical results presented previo
(Fig. 5). For the barotropic mode the optimal overlap is nearly 900 km, which leads to
additional work of about 90%. For the baroclinic modes the additional work is about 20
From a physical point of view, this result illustrates the fact that the convergence rate
the method is good as soon as the size of the overlap is of the order of the typical scal
motion (2t Ry for the baroclinic moded, for the barotropic mode).

Choice of the first guessNow we focus on the influence of the first guess on the
convergence properties. Table 1 shows the number of iterations required for the solutic
each mode as a function of the first guess. These results totally agree with the interpret:
of the theoretical factor of convergence we made in Section 3.2. The number of iterati
for the baroclinic modes are much less than for the barotropic mode.

As suggested in Section 3.2, we see that the choice of the first guess has a strong influ
on the results for the barotropic mode. In particular, the use of the first guess 2 (first-ot
approximation) can lead to noticeably better results than the first guess 1. Since most nu
ical models store two time steps in memory, the use of this first guess 2 is straightforw
and can lead to an efficient implementation of the DDM.

Partitioning. Additional tests were performed, corresponding to different partitioning
of the ocean basin into eight subdomains. The results for the barotropic mode and for
first guess 2 are displayed in Table 2. We indicate the number of iterations to converge
the corresponding relative error, which is given Jay— u*|2/||u*||2 on . (For sake of
simplicity the figures do not represent the overlaps.) It appears that a domain decompos
in the two directions leads to more iterations that in the one direction decomposition c:
due to the increase of the overlap and to our solver. Then we decide to used a decompo:
in one direction.

TABLE 1
Number of Iterations as a Function of the Mode and
the First Guess

Mode First guess 0 First guess 1 First guess 2
0 22 10 7
1 3 3 2

2 3 3 2
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TABLE 2
Number of Iterations and Error for Different Partitionings

Partitioning Iterations number Relative error
Y
X 10 4.265e-5
Y
X 9 4.373e-5
Y
X 15 3.499e-5
Y
X 18 8.167e-5

Moreover, as mentioned previously the larger the length in the X direction, the faster
solver. So even if the DDM converges approximatively in the same number of iterations
the X or Y decompositions we prefer using a decomposition in the Y direction.

More than finding this optimal partitioning for this particular model, the important poir
here lies in the fact that the choice of the domain partitioning appears as a key fa
for the efficiency of the method. It is linked to the different sources of anisotropy, in tl
numerical solver (different treatment of the andY-axis), in the computer (vectorization,
for instance), and in the physics of the problem.

4.3. Influence of the Turbulence

Another point of interest in the context of ocean modelling is the stability of the meth
with regard to an increase of the turbulence. As a matter of fact, the large scale low re
lution ocean models exhibit only relatively low level of turbulence, while eddy resolvin
models can be highly turbulent. That is why we compared the performance of the met
for three different cases corresponding to three levels of turbulence (denoted cases 1,
The three corresponding Reynolds numbersRyre- 700, 2000, and 6000, respectively.
The results for the three modes and for the first guess 2 are summarized in Tables 3 an

TABLE 3
Iterations Number
Case Mode 0 Mode 1 Mode 2
1 7 2 2
2 8 2 2

3 8 3 3
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TABLE 4
Relative Error
Case Mode 0 Mode 1 Mode 2
1 6.026e-5 1.135e-5 7.94e-6
2 7.229e-5 1.279e-5 9.470e-6
3 1.056e-4 1.123e-4 8.433e-6

terms of number of iterations and relative error. The important point here is that the num
of iterations remains stable as the turbulence increases. However, we can observe a
increase of the relative error, which remains in agreement with the error associated with
direct sequential solver.

4.4. Accuracy of the Method

In this section we compare the errors given by the Schwarz method and by the seque
solver. We first study the evolution of the error with an increase of the number of subdoma
Table 5 summarizes the results obtained for a decomposition in the Y direction. It appe
that increasing the number of subdomains produces a decrease of the relative error, yie
a greater accuracy than with the direct solver. Indeed, as all other direct methods, the d
fast Fourier transform method can lead to poor precision results when the size of the dor
becomestoo large. Here domain decomposition appears as a way to guarantee good acc
using the same fast direct method on all subdomains.

In our case the relative error given by the direct solver is small enough for our stu
So we have now to find a stopping criterion for the DDM which leads to the same p
cision as the direct solver does (in order to compare timing results obtained for the s:
precision). Figure 9 shows an example of the evolution of the stopping criterion val
suR<jm (I} — uf~{l2/[luj||2) and of the corresponding relative error. For this test, th
precision obtained by the DDM is better than the precision of the sequential solver aftel
iterations. This corresponds to a stopping criteriom ef2, 5.10~%. In the following, we
will use e =104, which ensures a good precision. Note that this test was made with fc
subdomains. However, the first remark of this paragraph leads to the conclusion that fol
same value of the precision is improved when using more subdomains.

4.5. Timing Results

Code implementatiorin order to implement the code on a parallel machine we used tt
standard language MPI (message passing interface; see [15]). This language is a librg
communication routines that allows the exchange of messages between processors.

TABLE 5
Evolution Erro—Number of Subdomains

Error of the direct solver: 8.715e-5

Number of subdomains Relative error
2 1.085e-4
4 6.026e-5
8 4.265e-5

16 2.152e-5
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FIG. 9. Evolution of the value of the stopping criterion (left) and the relative error (right).

The Schwarz algorithms were integrated in the quasi-geostrophic model. So the Helmt
equations are solved at each time step using the Schwarz alternating method. The reme
part of the code (mainly the right hand side and the time stepping) can be computed to
independently on each subdomain and does not require any communications. The rr
is integrated during 1000 time steps. We implemented this code on the CRAY T3D (1
processors) and the IBM SP1 (32 processors). These two massively parallel machine
actually the most commonly used in the scientific community. The T3D benefits of a ve
fast communication network due to its topology (a 3D torus) and the global addressing
its memory. On the other hand, the communication times are more costly on the SP1 (e
using the IBM switch). However, the SP1 takes advantage of its processors (IBM RS6C
which are much faster that the relatively slow processors of the T3D (DIGITAL DEC alph:

The practical implementation of the Schwarz alternating method is very straightforwa
The algorithm consists of two main points. First, we need to exchange the boundary c
ditions between subdomains. This is done by packing all the elements of a boundar
an array and by sending this array to the processors handling the neighboring subdol
(using the routine®MPl _SendandMPI _Rec\). The second point is the computation of
the residual error. We start by computing the relative error locally on each subdomain
then the maximum is computed over all the subdomains. MPI provides a very efficient f
cedure for thigMPI _Allreduce). This routine takes in argument the local norm on eacl
subdomain and then, called by each processor with the paramPilerMAX , it returns
to each processathe maximum of all the norms. An equivalent routine does not exist i
PVM (where the maximum is returned to ordpe selected procesgand we take it as a
significant drawback of PVM.

Timing results. The evolution of the parallel time on the CRAY T3D and the IBM SP1
are displayed in Fig. 10. It appears clearly that the CRAY T3D and the IBM SP1 have sim
behaviour with regard to an increase of the number of subdomains. Algorithms Schwa
and Schwarz-3 are more efficient than algorithm Schwarz-1, which is in agreement v
the results found in Section 3. For more than 16 processors, the timings do not significa
decrease anymore. The reason is that the size of the subdomains and, therefore, the
computation over communication become too small. A second reason is that we know f
the theoretical study that the convergence properties of the algorithm decrease whel
number of subdomains grows.

Moreover, we can notice that the CRAY T3D and the IBM SP1 both lead approximat
to the same timings. Despite its relatively slow processors, the T3D gives timings as goo
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———  Algorithm Schwarz(1]
sy e Algorithm Schwarz[2] St —— Algorithm Schwarz{1]
— — - AlgoithmSchwarz(3y | e Algorithm Schwarz[2]
4t <o CRAY C90

a1 — — - Algorithm Schwarz(3]

Time (in seconds)
Time (in seconds)
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FIG. 10. Timings (left) CRAY T3D; (right) IBM SP1.

those given by the IBM SP1 due to its efficient communication network. On 16 processt
the code runs on the T3D as fast as on the CRAY C90, which is a good result for a par:
application.

5. CONCLUSION

In this paper we examine the application of the Schwarz domain decomposition met
to the solution of Poisson and Helmholtz equations in the context of ocean modelli
A theoretical study highlights the peculiar role played by the barotropic mode. Due
the smaller typical length scales of baroclinic modes, the convergence of the algorit
is achieved faster for these modes than for the barotropic mode. On the numerical p
of view, we have discussed the practical choice of the different parameters involvec
the implementation of the method. Our tests showed that the convergence propertie
the method are not altered by an increase of the turbulence, which was not true f
nonoverlapping method we also tested (not discussed in this paper). Moreover, it is sh
that DDMs allow the solution of large problems with good accuracy, while global metho
exhibit a loss of accuracy when the size of the problem increases. Timing results st
that this method can be efficiently incorporated in an oceanic model for use on pare
computers. This model is presently used on the CRAY T3D for simulations of the Antarc
circumpolar current with a 17eéhorizontal resolution.

ACKNOWLEDGMENTS

The calculations were made possible by the computer facilities at the Centre Grenoblois de Calcul Vect
(CEA) and at the Institut du Developpement et des Ressources en Informatique Scientifiqgue (IDRIS-CNI
IDOPT is a joint CNRS/University of Grenoble/Institut National Polytechnique de Grenoble/INRIA project.

REFERENCES

1. A. Arakawa, Computational design for long term integration of the equations of fluid mofio@smput.
Phys.1, 119 (1966).
2. L. Bengtsson and C. Temperton, Difference approximations to quasi geostrophic modeisnérical

Methods used in Atmospheric Model. 11, p.338. (WMO/ICSU Joint Organizing Committee, London,
1979).[GARP Publ. Ser. 17]



10.

11.

12.

13.

14.

15.

16.

17.
18.
19.

OCEAN MODELLING 111

. R.Bleck, R. Rooth, D. Hu, and L. Smith, Salinity-driven thermocline transients in a wind- and thermohalir
forced isopycnic model of the north Atlantid, Phys. Oceanog®2, 1486 (1992).

. T. F. Chan and D. Goovaerts, On the relationship between overlapping and nonoverlapping domain de
position methodsSIAM J. Matrix Anal. Appl13, 663 (1992).

. C. G. Douglas and M. B. Douglas, MGNet Bibliography, in mgnet/bib/mgnet.bib, on anonymous ftp ser
casper.ca.yale.edu, Yale University, Department of Computer Science, New Haven, CT, 1996. [Last mod
on October 22, 1996]

. J. K. Dukowicz and R. D. Smith, Implicit free-surface method for the Bryan—Cox—Semtner ocean dnode
Geophys. Re99, 7991 (1994).

. D.J. Evans, S. Jianping, K. Lishan, and C. Yuping, The convergence rate of the Schwarz alternating proce
(I1)-for Two Dimensional Problemsnt. Jour. Comp. Math20, 325 (1986).

. D. J. Evans and K. Lishan, New domain decomposition strategies for elliptic partial differential equatio
in Proc. of the Second International Symposium on Domain Decomposition Methods for Partial Different
Equations p. 173 (SIAM, Philadelphia, 1989).

. M. Guyon, M. Chartier, F.-X. Roux, and P. Fraunie, First considerations about modelling the ocean gen
circulation on MIMD machines by domain decomposition methoRiioceedings of the NATO Advanced
Research Workshop on High Performance Computing in the Geosciences, les Houches, France, 21-25
1993 edited by F.-X. Le Dimet (Kluwer Academic, Dordrecht, 1995). [NATO ASI Series C462]

W. R. Holland, The role of mesoscale eddies in the general circulation of the ocean. Numerical experim
using a wind-driven quasi-geostrophic modelPhys. Oceanog8, 363 (1978).

K. Lishan and D. J. Evans, The convergence rate of the Schwarz alternating procedure (V)-for more thar
subdomainsint. Jour. Comp. Math23, 295 (1988).

P. D. Killworth, D. Stainforth, D. J. Webb, and S. M. Paterson, The development of a free-surface Bry
Cox—Semtner ocean modél,Phys. Oceanoggl, 1333 (1991).

P. L. Lions, On the Schwarz alternating method Rinc. of the First International Symposium on Domain
Decomposition Methods for Partial Differential Equatiomps 1 (SIAM, Philadelphia, 1988).

P. L. Lions, On the Schwarz alternating method Il, Stochastic interpretation and order propeRties, of
the Second International Symposium on Domain Decomposition Methods for Partial Differential Equatio
p. 47 (SIAM, Philadelphia, 1989).

MPI, MPI: A message-passing interface standard, in /pub/mpi/mpi-report.ps.Z on anonymous ftp se
ftp.mcs.anl.gov. [228 pages]

F. Mesinger and A. Arakawa, Time differencing scherhsnerical Methods Used in Atmospheric Models
Vol. II. p. 9 (WMO/ICSU Joint Organizing Committee, 1976). [GARP Publ. Ser. 17]

J. PedloskyGeophysical Fluid DynamioSpringer-Verlag, Berlin, 1987).
A. J. Semtner, Modelling ocean circulati@tience269, 1379 (1995).

R. D. Smith, J. K. Dukowicz, and R. C. Malone, Parallel ocean general circulation retysica D60, 38
(1992).



